

Jumpstart Python for micro:bit

Data Types
Data just means information your code works with.

Import Statements
Lets you use code from modules or
 libraries outside your source file.

String - a sequence of characters, like words or
sentences
name = “Firia Labs” #or ‘Firia Labs’
city = “Madison” #or ‘Madison’
display.scroll(“CodeSpace”)

Convert an integer or float to a string with str()
display.scroll(str(7)) #Converts to
“7”

Integer - a whole number that can be pos, neg, or zero
zip_code = 35758

num_trombones = 76

Convert a decimal or string to an integer with int()
int(7.9) #Returns 7
int(“25”) #Returns 25

Boolean - a value that can be True or False;
Zero values and empty strings are False

bool(“”) #Returns False
bool(“String”) #Returns True

bool(0) #Returns False
bool(1) #Returns True

To provide access to the ENTIRE built-in micro:bit code.
* is a wildcard and is shorthand for “everything”
from microbit import *

To access part of a module, call only the PART you
want
from random import randrange

random.randrange(10) #Returns random
integer 0-9

Loops
Repeating code, subject to conditions you give.

List - a sequence of items you can access with an index
colors = [“red”, “green”, “blue”]

colors [0] #Returns red
colors [1] #Returns green
colors [2] # “blue”

Count the length of a list with len()
len(colors) #Returns 3

Float - a real number with a decimal point
temperature = 98.6

pi = 3.141592

pi = round(pi,2) #Returns 3.14

Convert an integer to a float with float()
float(7) #Returns 7.0

Tuple - a sequence of immutable objects, similar to
lists. The difference between tuples and lists is that
tuples cannot be changed.

music.play(music.NYAN) #You can play
the song, but you cannot change any

individual notes.

While loops: the statement repeats the indented block
of code while the condition is true.

while loops < 30:

 loops = loops + 1

while True: #Forever loop, because
 True == True!

Variables
Memory space for storing things.

Functions
A chunk of code you can use by calling its name.

Branching
Decision points in code.

Comparison Operators
Testing different conditions

Must begin with a letter or _ , but may contain letters,
numbers, and _ .

Global variables: variables defined outside of a
function
my_favorite_number = 73

num = 8

n = n + 1 or n += 1

Local variables: variables inside functions
def spin_animation(num):

 delay = 50

 index = 0

 loops = 0

In other programming languages, they are also called
procedures.

#Define a new function

def flash_smile():

 display.show(Image.HAPPY)

 sleep(500)

 display.clear()

 sleep(500)

#Call the function

while True:

 flash_smile()

Your code with take a different branch depending on
values or conditions.

if condtion_A:
 #Do something amazing!
elif condition_B:
 #elif is short for “else if”
 #Do this only if condition B is

 true and condition A is false

else:
 #Finally, do this if A and B are
 false

Expressions let you compare two values. The result of a
comparison is a True/False Boolean value.

> Greater than

< Less than

== Is equal to

!= Is not equal to
>= Is greater than or equal to
<= Is less than or equal to

value = 5 #5 is assigned to value
x > 10 is False

x < 10 is True

x == 10 is True

Editor Shortcuts
Keyboard hotkeys to write code faster. On PCs, use the
control key (ctrl); on Macs, use the command (⌘) key

ctrl + x = cut; removes from the editor to be pasted
later

ctrl + c = copy; stores text to be pasted later
ctrl + v = paste; inserts stored text

ctrl + z = undo; undo the last action
ctrl + f = find; search for text in your program
ctrl + / = comment; toggles ‘#’ in front of line

https://make.firialabs.com/

https://make.firialabs.com/

Inputs and Outputs

Buttons
Read input statements from Buttons A or B

Accelerometer
Measures the force of acceleration in

 the x-, y-, and z-axis

Light Sensor
Measures the ambient light and

returns as an analog value

Magnetometer
Measures magnetic field strength and direction

button_a.was_pressed()

#Returns True if button A has been

pressed since the last call

button_a.is_pressed()

#Returns True if button A is

currently pressed

button_b.get_presses()

#Returns the number of times button B

has been pressed since the last call

accelerometer.get_x()

accelerometer.get_y()

accelerometer.get_z()

#Returns a value from -2048 to +2047

accelerometer.current_gesture()

accelerometer.was_gesture()

Gestures can be:
3g, 6g, 8g, up, down, left, right,

face up, face down, freefall, shake

The micro:bit actually uses the LEDs of the display as a
light sensor.

display.read_light_level() #Senses
ambient light. Returns an integer

between 0 (dark) and 255 (bright).

while True:

 light_level =

 display.read_light_level()

 display.scroll(str(light_level))

Get the magnetic field strength around the device, or
along one axis.
compass.get_field_strength()

compass.get_x()

compass.get_y()

compass.get_z()

compass.calibrate() #Start compass
calibration

compass.heading() #Returns the
compass heading 0-360, 0 as N

Music
Melodies that can be imported from a music library

Radio
Built in; can communicate with other micro:bits

Display
A 5x5 LED display

import music

Defaults are pin0, wait=True, loop=False,
ticks=4, bpm=120.

music.play(music, pin=microbit.pin0,

wait=True, loop=False)

music.stop(pin=microbit.pin0)

music.set_tempo(ticks=4, bpm=120)

music.pitch(frequency, duration=-1,

pin=microbit.pin0, wait=True) #Play
a sound for ‘duration’ in ms. -1

means continuous

import radio

radio.on()

radio.config(channel=N) #0-83

radio.send(“message”) #Send a
message string over the air

radio.receive() #Return a message
string if one has been received, or

an empty string if one has not

Defaults are wait=True, loop=False. If wait
is True, this function will block until the animation is
finished, otherwise the animation will happen in the
background. If loop is True, the animation will repeat
forever.

display.show(value, delay=400,
 wait=True, loop=False, clear=False)
 #Display these images in sequence

display.scroll(value, delay=150,
wait=True, loop=False)
#Scrolls value horizontally

display.clear() #Set all LEDs to 0
(off)

display.off() #Turn off the display
allows you to re-use the GPIO pins

associated with the display

display.on() #Turns the display on

To make a custom image, create a string that looks
like the display.

boat = Image("05050:"

 "05050:"

 "05050:"

 "99999:"

 "09990")

display.show(boat)

display.set_pixel(x, y, value) #Set
the brightness of the LED at column x

and row y to a value between 0 and 9.

display.get_pixel(x, y, value)
#Return the brightness of the LED at

column x and row y as an integer

between 0 (off) and 9 (bright).

fill(level) #Set the brightness
level

Pins
Input/Output connections

Digital
Finite values - 0 and 1

Analog
Values with an infinite variation

Time
Controlling the pace of actions

The pins are your board’s way to communicate with
external devices connected to it. There are 19 pins for
your disposal, numbered 0-16 and 19-20. Pins 17 and
18 are not available.

Returns 1 if the pin is high and 0 if it’s low.

value = pin.read_digital()

pin.write_digital(1)

The value may be either an integer or a floating point
number. Typically 0-1023 or 0-255, etc.
pin.write_analog(400)

value = pin.read_analog()

sleep(1000) #Delay function 1000 ms
or 1 second

value = running_time() #ms since
last reboot

